

Big-O Notation

A Motivating Question

 void printTrigrams_v1(const string& str) {
 for (int i = 0; i + 3 <= str.length(); i++) {
 string trigram = str.substr(i, 3);
 cout << trigram << endl;
 }
 }

 void printTrigrams_v2(const string& str) {
 string s = str;
 while (s.length() >= 3) {
 cout << s[0] << s[1] << s[2] << endl;
 s = s.substr(1);
 }
 }

Estimating Quantities

The glass is filled to half its height.
What fraction of the glass is full?

Answer at
https://cs106b.stanford.edu/pollev

https://cs106b.stanford.edu/pollev

Knowing the rate at which some quantity
scales allows you to predict its value in the

future, even if you don’t have an exact
formula.

Big-O Notation
● Big-O notation is a way of quantifying the

rate at which some quantity grows.
● For example:

● A square of side length r has area O(r2).
● A circle of radius r has area O(r2).

Doubling r increases area 4×.
Tripling r increases area 9×.

r
2r

3r

Doubling r increases area 4×.
Tripling r increases area 9×.

r
2r

3r

A 4A 9A A’ 4A’ 9A’

Big-O Notation
● Big-O notation is a way of quantifying the

rate at which some quantity grows.
● For example:

● A square of side length r has area O(r2).
● A circle of radius r has area O(r2).
● A cube of side length r has volume O(r3).
● A sphere of radius r has volume O(r3).
● A sphere of radius r has surface area O(r2).
● A cube of side length r has surface area O(r2).

Example: Metcalfe’s Law
● Metcalfe’s Law says that

The value of a communications
network with n users is O(n2).

● Imagine a social network has 10,000,000
users and is worth $10,000,000. Estimate
how many users it needs to have to be worth
$1,000,000,000.

● Reasonable guess: The network needs to
grow its value 100×. Since value grows
quadratically with size, it needs to grow its
user base 10×, requiring 100,000,000 users.

Example: Metcalfe’s Law

Example: Metcalfe’s Law

×

×

×

✓ ✓ ✓ ✓✓
×

×

×

✓ ✓ ✓
✓ ✓

✓
✓

✓ ✓
✓

✓
✓✓

✓
✓✓

✓ ✓
✓✓

n2 − n
2

✓ ✓ ✓ ✓ ✓

✓

✓

Example: Metcalfe’s Law

× ✓ ✓ ✓ ✓
× ✓ ✓ ✓

✓ ✓ ✓
✓ ✓

✓
✓

✓ ✓
✓

✓
✓ ×

✓
×

×

×

✓
✓

✓✓

✓✓

n2 − n
2

✓

✓

✓

✓

Example: Metcalfe’s Law

× ✓ ✓ ✓ ✓
× ✓ ✓ ✓

✓ ✓ ✓
✓ ✓

✓
✓

✓ ✓
✓

✓
✓ ×

✓
×

×

×

✓
✓

✓✓

✓✓

✓

✓

O(n²)

Big-O notation ignores
multiplicative constants.

Big-O notation ignores
low-order terms that don’t

contribute to long-term
growth.

Counting Cubes
● Suppose we make a

pyramid of cubes like
the one shown to the
right.

● The top layer is a 1×1
square of cubes, the
next is a 2×2 square of
cubes, then a 3×3
square of cubes, etc.

● How many cubes are
there if the pyramid is n
layers deep?

Counting Cubes
● Here’s some numbers:

10 layers: 00,385 cubes
20 layers: 02,870 cubes
30 layers: 09,455 cubes
40 layers: 22,140 cubes
50 layers: 42,925 cubes

● Question: Can we
roughly estimate how
many cubes will be in a
60-layer stack, even if we
don’t have an exact
formula?

Counting Cubes
● In case you’re curious,

the exact formula is

● This quantity is O(n3)
because

● big-O notation ignores
constant factors, and

● big-O notation ignores
lower-order terms.

● We still worked out the
big-O growth rate without
the exact formula!

n3

3 + n2

2 + n
6 .

Nuances of Big-O Notation
● Big-O notation is designed to capture the

rate at which a quantity grows.
● It does not capture information about

● leading coefficients: the area of a square of
side length r and a circle of radius r are each
O(r2).

● lower-order terms: the functions n, 5n, and
137n + 42 are all O(n).

● However, it’s still a powerful tool for
predicting behavior.

Time-Out for Announcements!

Assignment 4
● Assignment 3 was due today at 1:00PM.

● Need more time? You have four free “late days” to use over the
quarter. You can use up to two of them here.

● Assignment 4 (Recursion to the Rescue!) goes out today.
It’s due next Friday at 1:00PM and must be completed
individually.
● Play around with recursive problem-solving in realistic situations.
● Explore the power – and potential pitfalls – of recursive optimization.

● YEAH Hours run today from 4:30PM – 5:30PM just around the
corner in Hewlett 101.

● As always, feel free to ask for help when you need it! Ping us
on EdStem, stop by the LaIR, or visit our office hours in the
Shiny New CoDa Building.

Lecture Participation Opt-Out
● The deadline to opt out of lecture

participation and shift the weight to your
final exam is tonight at 11:59PM.

● Link is available
● on the course website in the announcements

section,
● on EdStem on the pinned post, and
● right here!

● Make sure to get this in by tonight!

https://forms.gle/UvEQC5KjiV9Rm3fT9

Midterm Exam Reminder
● Our midterm exam will be on Monday, February 10th from

7:00PM – 10:00PM.
● We will go over more exam logistics this upcoming Monday.

Briefly:
● The exam covers L00 – L09 (basic C++ up through but not including

recursive backtracking) and A0 – A3 (debugging through recursion).
● It’s a traditional sit-down, pencil-and-paper exam.
● It’s closed-book, closed-computer, and limited-note. You can bring an

8.5” × 11” sheet of notes with you to the exam.
● We’ve posted a huge searchable bank of practice problems to

the course website, along with three practice exams made
from questions selected from that bank.

● Students with OAE accommodations: You should already have
heard from us with details of your alternate exam
arrangements. Contact us immediately if you haven’t.

fg
(The Unix command to resume a program that was paused)

 void printTrigrams_v1(const string& str) {
 for (int i = 0; i + 3 <= str.length(); i++) {
 string trigram = str.substr(i, 3);
 cout << trigram << endl;
 }
 }

 void printTrigrams_v2(const string& str) {
 string s = str;
 while (s.length() >= 3) {
 cout << s[0] << s[1] << s[2] << endl;
 s = s.substr(1);
 }
 }

Applying Big-O Notation to Code

Assume any individual statement takes one unit
of time to execute. If the input Vector has n elements,

how many time units will this code take to run?

double averageOf(const Vector<int>& vec) {
 double total = 0.0;

 for (int i = 0; i < vec.size(); i++) {
 total += vec[i];
 }

 return total / vec.size();
}

One possible answer: 3n + 4.

double averageOf(const Vector<int>& vec) {
 double total = 0.0;

 for (int i = 0; i < vec.size(); i++) {
 total += vec[i];
 }

 return total / vec.size();
}

1

1 n+1 n

n

1

Is this useful?

What does that
tell us?

One possible answer: 3n + 4.
More useful answer: O(n).

double averageOf(const Vector<int>& vec) {
 double total = 0.0;

 for (int i = 0; i < vec.size(); i++) {
 total += vec[i];
 }

 return total / vec.size();
}

1

1 n+1 n

n

1 Doubling the size of the
input roughly doubles the

runtime.

If we get some data points,
we can extrapolate

runtimes to good precision.

How much time will it take for this code to run,
as a function of n? Answer using big-O notation.

void printStars(int n) {
 for (int i = 0; i < n; i++) {
 for (int j = 0; j < n; j++) {
 cout << '*' << endl;
 }
 }
}

 Answer: O(n2).

void printStars(int n) {
 for (int i = 0; i < n; i++) {
 for (int j = 0; j < n; j++) {
 cout << '*' << endl;
 }
 }
}

How much time will it take for these functions to run,
as a function of n? Answer using big-O notation.

void beni(int n) {
 for (int i = 0; i < 2 * n; i++) {
 for (int j = 0; j < 5 * n; j++) {
 cout << '*' << endl;
 }
 }
}
void pando(int n) {
 for (int i = 0; i < 3 * n; i++) {
 cout << "*" << endl;
 }
 for (int i = 0; i < 8; i++) {
 cout << "*" << endl;
 }
}

How much time will it take for these functions to run,
as a function of n? Answer using big-O notation.

void beni(int n) {
 for (int i = 0; i < 2 * n; i++) {
 for (int j = 0; j < 5 * n; j++) {
 cout << '*' << endl;
 }
 }
}
void pando(int n) {
 for (int i = 0; i < 3 * n; i++) {
 cout << "*" << endl;
 }
 for (int i = 0; i < 8; i++) {
 cout << "*" << endl;
 }
}

O(n2)

O(n)

Computing Substrings
● Constructing a substring of length k

takes time O(k).
● Why?

● We need to copy each of the k characters

that make up the substring.

a p p r a i s i n g

r a i s i n

r a i s i n

 void printTrigrams_v1(const string& str) {
 for (int i = 0; i + 3 <= str.length(); i++) {
 string trigram = str.substr(i, 3);
 cout << trigram << endl;
 }
 }

 void printTrigrams_v2(const string& str) {
 string s = str;
 while (s.length() >= 3) {
 cout << s[0] << s[1] << s[2] << endl;
 s = s.substr(1);
 }
 }

O(n)

O(n²)

Recap from Today
● Big-O notation captures the rate at which

a quantity grows or scales as the input
size increases.

● Big-O notation ignores low-order terms
and constant factors.

● “When in doubt, work inside out!” When
you see loops, work from the inside out
to determine the big-O complexity.

Your Action Items
● Read Chapter 10.1 – 10.2.

● It’s all about big-O and efficiency, and it’s a
great complement to what we covered today.

● Read the Guide to Big-O Notation.
● It includes a bunch of useful tips that expand

upon what we did in lecture today.
● Start Assignment 4.

● If you want to follow our suggested timetable,
aim to complete Win Sum, Lose Sum and Shift
Scheduling by this Monday.

Next Time
● Sorting Algorithms

● How do we get things in order?
● Designing Better Algorithms

● Using predictions from big-O notation.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

